Tuesday, February 7, 2012

MASALAH OPTIMALISASI & PEMROGRAMAN LINIER


Pemrograman Linier disingkat PL merupakan metode  matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan keuntungan dan meminimumkan biaya. PL banyak diterapkan dalam masalah ekonomi, industri, militer, social dan lain-lain. PL berkaitan dengan penjelasan suatu kasus dalam dunia nyata sebagai suatu model matematik yang terdiri dari sebuah fungsi tujuan linier dengan beberapa kendala linier.

Karakteristik  Pemrograman Linier
  1. Sifat linearitas  
  2. Sifat proporsional 
  3. Sifat additivitas 
  4. Sifat divisibilitas 
  5. Sifat kepastian 
  6. sifat asumsi
Pembentukan model matematik
Fungsi tujuan :
Maksimumkan atau minimumkan z = c1x1 + c2x2 + ... + cnxn

Sumber daya yang membatasi :

a11x1 + a12x2 + ... + a1nxn = /≤ / ≥ b1
a21x1 + a22x2 + … + a2nxn = /≤ / ≥ b2
am1x1 + am2x2 + … + amnxn = /≤ / ≥ bm
x1, x2, …, xn ≥ 0

Simbol x1, x2, ..., xn  (xi) menunjukkan variabel keputusan. Jumlah variabel keputusan (xi) oleh karenanya tergantung dari jumlah kegiatan atau aktivitas yang dilakukan untuk mencapai tujuan.  Simbol c1,c2,...,cn merupakan kontribusi masing-masing variabel keputusan terhadap tujuan, disebut juga koefisien fungsi tujuan pada model matematiknya.Simbol a11, ...,a1n,...,amn merupakan penggunaan per unit variabel keputusan akan sumber daya yang membatasi, atau disebut juga sebagai koefisien fungsi kendala pada model matematiknya. Simbol b1,b2,...,bm menunjukkan jumlah masing-masing sumber daya yang ada. Jumlah fungsi kendala akan tergantung dari banyaknya sumber daya yang terbatas.

Pertidaksamaan terakhir  (x1, x2, …, xn ≥ 0) menunjukkan batasan non negatif. Membuat model matematik dari suatu permasalahan bukan hanya menuntut kemampuan matematik tapi juga menuntut seni permodelan. Menggunakan seni akan membuat permodelan lebih mudah dan menarik.

Kasus pemrograman linier sangat beragam. Dalam setiap kasus, hal yang penting adalah memahami setiap kasus  dan memahami konsep permodelannya. Meskipun fungsi tujuan misalnya hanya mempunyai kemungkinan bentuk maksimisasi atau minimisasi, keputusan untuk memilih salah satunya bukan pekerjaan mudah. Tujuan pada suatu kasus bisa menjadi batasan pada kasus yang lain. Harus hati-hati dalam menentukan tujuan, koefisien fungsi tujuan, batasan dan koefisien pada fungsi pembatas.

Contoh Kasus yang diselesaikan


Pada sub bab ini terdapat 10 kasus dengan karakteristik berbeda yang sudah diselesaikan untuk memperkaya pembaca dalam ilmu dan seni permodelan. Pahami dan perhatikan teknik permodelannya dengan hati-hati.

  1. Seorang pengrajin menghasilkan satu tipe meja dan satu tipe kursi. Proses yang dikerjakan hanya merakit meja dan kursi. Dibutuhkan waktu 2 jam untuk merakit 1 unit meja dan 30 menit untuk merakit 1 unit kursi. Perakitan dilakukan oleh 4 orang karyawan dengan waktu kerja 8 jam perhari. Pelanggan pada umumnya membeli paling banyak 4 kursi untuk 1 meja. Oleh karena itu pengrajin harus memproduksi kursi paling banyak empat kali jumlah meja. Harga jual per unit meja adalah Rp 1,2 juta dan per unit kursi adalah Rp 500 ribu.

Formulasikan kasus tersebut ke dalam model matematiknya !
Kita definisikan :
x1 = jumlah meja yang akan diproduksi
x2 = jumlah kursi yang akan diproduksi

Model umum Pemrograman Linier kasus di atas adalah :

Fungsi tujuan :
Maksimumkan z = 1.2 x1 + 0.5 x2

Kendala :
2x1 + 0.5 x2 ≤ 32
x1/x2 ≥ ¼ atau 4x1≥ x2 atau 4x1 – x2 ≥ 0
x1 , x2 ≥ 0


  1. Seorang peternak memiliki 200 kambing yang mengkonsumsi 90 kg pakan khusus setiap harinya. Pakan tersebut disiapkan menggunakan campuran jagung dan bungkil kedelai dengan komposisi sebagai berikut :

Bahan
Kg per kg bahan
Kalsium
Protein
Serat
Biaya (Rp/kg)
Jagung
0.001
0.09
0.02
2000
Bungkil kedelai
0.002
0.60
0.06
5500

 
Kebutuhan pakan kambing setiap harinya adalah paling banyak 1% kalsium, paling sedikit 30% protein dan paling banyak 5% serat.
Formulasikan permasalahan di atas kedalam model matematiknya !

Kita definisikan :
x1 = jumlah jagung yang akan digunakan
x2 = jumlah bungkil kedelai yang akan digunakan

Model umum Pemrograman linier kasus di atas oleh karenanya adalah :

Fungsi tujuan : minimumkan z = 2000 x1 + 5500 x2
Kendala :
x1 + x2 = 90
0.001 x1 + 0.002 x2 ≤ 0.9
0.09 x1 + 0.6 x2 ≥ 27
0.02 x1 + 0.06 x2 ≤ 4.5
x1, x2 ≥ 0
3.  Suatu bank kecil mengalokasikan dana maksimum Rp 180 juta untuk pinjaman pribadi dan pembelian mobil satu bulan kedepan. Bank mengenakan biaya suku bunga per tahun 14% untuk pinjaman pribadi dan 12% untuk pinjaman pembelian mobil. Kedua tipe pinjaman itu dikembalikan bersama dengan bunganya satu tahun kemudian. Jumlah pinjaman pembelian mobil paling tidak dua kali lipat dibandingkan pinjaman pribadi. Pengalaman sebelumnya menunjukkan bahwa 1% pinjaman pribadi merupakan kredit macet.
Formulasikan masalah di atas kedalam   bentuk model matematiknya !

x1 = jumlah anggaran untuk pinjaman pribadi
x2 = jumlah anggaran untuk pinjaman pembelian mobil.

Model umum Pemrograman Linier kasus diatas adalah :

Fungsi tujuan : Maksimumkan z = (0.14 – 0.01) x1 + 0.12 x2
Kendala :
x1 + x2 ≤ 180
x2 ≥ 2x1 atau -2x1 + x2 ≥ 0
x1, x2 ≥ 0

4.    Empat produk diproses secara berurutan pada 2 mesin. Waktu pemrosesan dalam jam per unit produk pada kedua mesin ditunjukkan table di bawah ini :

Mesin
Waktu per unit (jam)
Produk 1
Produk 2
Produk 3
Produk 4
1
2
3
4
2
2
3
2
1
2

 
Biaya total untuk memproduksi setiap unit produk didasarkan secara langsung pada jam mesin. Asumsikan biaya operasional per jam mesin 1 dan 2 secara berturut-turut  adalah $10 dan $5. Waktu yang disediakan untuk memproduksi keempat produk pada mesin 1 adalah 500 jam dan mesin 2 adalah 380 jam. Harga jual per unit keempat produk secara berturut-turut adalah $65, $70, $55 dan $45. Formulasikan permasalahan di atas ke dalam model matematiknya !

Solusi :
Alternatif keputusan adalah : jumlah produk 1,2,3 dan 4 yang dihasilkan.
Tujuannya adalah memaksimumkan keuntungan. Perhatikan, keuntungan diperoleh dengan mengurangkan biaya dari pendapatan.
Keuntungan per unit dari produk 1 = 65 – (10x2  + 3x5) = 30
Keuntungan per unit dari produk 2 = 70 – (10x3 + 2x5) = 30
Keuntungan per unit dari produk 3 = 55 – (10x4 + 1x5) = 10
Keuntungan per unit dari produk 4 = 45 – (10x2 + 2x5) = 15

Sumber daya pembatas adalah waktu kerja yang disediakan kedua mesin.

Definisikan :
x1 : jumlah produk 1 yang dihasilkan
x2 : jumlah produk 2 yang dihasilkan
x3 : jumlah produk 3 yang dihasilkan
x4 : jumlah produk 4 yang dihasilkan

Model umum pemrograman linier :
Maksimumkan z = 30 x1 + 30x2 + 10 x3 + 15 x4
Kendala :
2x1 + 3 x2 + 4x3 + 2x4 ≤ 500
3x1 + 2 x2 + x3 + 2x4 ≤ 380
x1, x2,  x3 , x4   ≥ 0

  1. Suatu perusahaan manufaktur menghentikan produksi salah satu produk yang tidak menguntungkan. Penghentian ini menghasilkan kapasitas produksi yang menganggur (berlebih). Kelebihan kapasitas produksi ini oleh manajemen sedang dipertimbangkan untuk dialokasikan ke salah satu  atau ke semua produk yang dihasilkan (produk 1,2 dan 3). Kapasitas yang tersedia pada mesin yang mungkin akan membatasi output diringkaskan pada table berikut :
 
Tipe mesin
Waktu yang dibutuhkan produk pada masing-masing mesin (jam)
Waktu yang tersedia (jam per minggu)
Produk 1
Produk 2
Produk 3
Mesin milling
9
3
5
500
Lathe
5
4
0
350
Grinder
3
0
2
150

 
Bagian penjualan mengindikasikan bahwa penjualan potensial untuk produk 1 dan 2 tidak akan melebihi laju produksi maksimum dan penjualan potensial untuk produk 3 adalah 20 unit per minggu. Keuntungan per unit masing-masing produk secara berturut-turut adalah $50, $20 dan $25.
Formulasikan permasalahan diatas kedalam model matematik !

Solusi :
Alternatif keputusan :
Jumlah produk 1 yang dihasilkan = x1
Jumlah produk 2 yang dihasilkan = x2
Jumlah produk 3 yang dihasilkan = x3

Tujuannya adalah : memaksimumkan keuntungan
Sumber daya pembatas adalah :
Jam kerja mesin milling per minggu : 500 jam
Jam kerja mesin llathe per minggu : 350 jam
Jam kerja mesin grinder per minggu : 150 jam.

Model matematikanya adalah :
Maksimumkan z = 50 x1 + 20 x2 + 25 x3
Kendala :
9x1 + 3 x2 + 5x3 ≤ 500
5x1 + 4 x2 ≤ 350
3x1 + 2x3 ≤ 150
x3 ≤ 20
x1, x2,  x3 g  ≥ 0

Frizzy's Blogs

Author & Editor

Has laoreet percipitur ad. Vide interesset in mei, no his legimus verterem. Et nostrum imperdiet appellantur usu, mnesarchum referrentur id vim.

0 comments:

Post a Comment